Rep.2016, 6, 30619. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Nat. Mater.2015, 25, 4183–4194. Chem. Ma, L. Y.; Dichwalkar, T.; Chang, J. Y. H.; Cossette, B.; Garafola, D.; Zhang, A. Q.; Fichter, M.; Wang, C. S.; Liang, S.; Silva, M. et al. Med.2007, 3, 103–110. Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Zhu, X. H.; Tang, R.; Wang, S. G.; Chen, X. Y.; Hu, J. J.; Lei, C. Y.; Huang, Y.; Wang, H. H.; Nie, Z.; Yao, S. Z. Smith, T. T.; Stephan, S. B.; Moffett, H. F.; McKnight, L. E.; Ji, W. H.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M. E.; Pillai, S. P. S.; Stephan, M. T. In situ programming of leukaemia-specific t cells using synthetic DNA nanocarriers. Biol.2016, 50, 705–709. Z.; Sleightholm, R.; Prajapati, D. R.; Bader, J.; Yu, A.; Tang, W. M.; Jaramillo, L.; Li, J. et al. Kim, S. Y.; Kim, S.; Kim, J. E.; Lee, S. N.; Shin, I. W.; Shin, H. S.; Jin, S. M.; Noh, Y. W.; Kang, Y. J.; Kim, Y. S. et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Colegio, O. R.; Chu, N. Q.; Szabo, A. L.; Chu, T.; Rhebergen, A. M.; Jairam, V.; Cyrus, N.; Brokowski, C. E.; Eisenbarth, S. C.; Phillips, G. M. et al. Skalniak, L.; Zak, K. M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M. et al. The full text of this article hosted at iucr.org is unavailable due to technical difficulties. Sheng Wang, Guocan Yu, Zhantong Wang, Orit Jacobson, Li‐Sen Lin, Weijing Yang, Hongzhang Deng, Zhimei He, Yuan Liu, Zhi‐Yi Chen, Xiaoyuan Chen, Enhanced Antitumor Efficacy by a Cascade of Reactive Oxygen Species Generation and Drug Release, Angewandte Chemie International Edition, 10.1002/anie.201908997, 58, 41, (14758-14763), (2019). Xia, X. J.; Mai, J. H.; Xu, R.; Perez, J. E. T.; Guevara, M. L.; Shen, Q.; Mu, C. F.; Tung, H. Y.; Corry, D. B.; Evans, S. E. et al. Tumor induction of VEGF promoter activity in stromal cells. 033. In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles. Sci. Jay Prakash, Zhijian Yang, Yu-Lin Wei, Haitham Hassanien, and Romit Roy Choudhury ACM MobiCom 2020 (Acceptance rate: 62/384 = 16.1%) Voice Localization Using Nearby Wall Reflections Sheng Shen, Daguan Chen, Yu-Lin Wei, Zhijian Yang and Romit Roy Choudhury ACM MobiCom 2020 (Acceptance rate: 62/384 = 16.1%) International Journal of Hydrogen Energy. Nam, J.; Son, S.; Park, K. S.; Zou, W. P.; Shea, L. D.; Moon, J. J. Natl. DOI: 10.1016/j.molstruc.2011.10.010. Zhang, H. M.; Chen, J. Biomaterials2018, 182, 82–91. Engineered T cell therapy for cancer in the clinic. SnapShot: Immune checkpoint inhibitors. Liu Sheng Kui Lu Dian Chen (, 1886 - 1948) also a student of Yang Cheng Fu Niu Lian Yuan Pu Lun Bei Zi (a Ming prince) Quan You (全佑, 1834-1902) also a student of Yang Lu Chan Shou Yu Sheng Si Xingsan Tian Zhao-lin (Tian Shaolin, Tian Shao Xian,, 1890 - ) . Biotechnol.2018, 36, 160–169. Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J. J.; Cowey, C. L.; Lao, C. D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P. et al. B. et al. Vinay, D. S.; Ryan, E. P.; Pawelec, G.; Talib, W. H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W. K.; Whelan, R. L.; Kumara, H. M. C. S. et al. Kojima, Y.; Acar, A.; Eaton, E. N.; Mellody, K. T.; Scheel, C.; Ben-Porath, I.; Onder, T. T.; Wang, Z. C.; Richardson, A. L.; Weinberg, R. A. et al. Rev.2019, 119, 1138–1192. Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K. et al. Her attention to studies and her positive attitude were a welcome part of an engaging classroom focused … AllergoOncology: Opposite outcomes of immune tolerance in allergy and cancer. Biochem. Mater.2019, 31, 1900192. Truffi, M.; Mazzucchelli, S.; Bonizzi, A.; Sorrentino, L.; Allevi, R.; Vanna, R.; Morasso, C.; Corsi, F. Nano-strategies to target breast cancer-associated fibroblasts: Rearranging the tumor microenvironment to achieve antitumor efficacy. However, low response rate and immune-related adverse effects (irAEs) remain problems during its management. Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Gao, S. Q.; Li, T. Y.; Guo, Y.; Sun, C. X.; Xianyu, B. R.; Xu, H. P. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Nano Res.2018, 11, 5642–5656. Science2019, 363, eaau0135. Nature2015, 517, 386–390. Helmy, K. Y.; Patel, S. A.; Nahas, G. R.; Rameshwar, P. Cancer immunotherapy: Accomplishments to date and future promise. Shen Lin was born on October 23, 1980 in Beijing, China. Biomaterials2020, 232, 119676. Rev. Nature2019, 574, 45–56. Beatty, G. L.; O’Hara, M. H.; Lacey, S. F.; Torigian, D. A.; Nazimuddin, F.; Chen, F.; Kulikovskaya, I. M.; Soulen, M. C.; McGarvey, M.; Nelson, A. M. et al. In the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). Mater.2019, 8, 1801188. Xu, P. P.; Wang, X. Y.; Li, T. W.; Wu, H. H.; Li, L. L.; Chen, Z. L.; Zhang, L.; Guo, Z.; Chen, Q. W. Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. Jafari, S.; Molavi, O.; Kahroba, H.; Hejazi, M. S.; Maleki-Dizaji, N.; Barghi, S.; Kiaie, S. H.; Jadidi-Niaragh, F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Chen, Q.; Liu, G. X.; Liu, S.; Su, H. Y.; Wang, Y.; Li, J. Y.; Luo, C. Remodeling the tumor microenvironment with emerging nano-therapeutics. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. Hu, Q. Y.; Sun, W. J.; Wang, J. Q.; Ruan, H. T.; Zhang, X. D.; Ye, Y. Q.; Shen, S.; Wang, C.; Lu, W. Y.; Cheng, K. et al. CA Cancer J. Clin.2020, 70, 86–104. Fidler, M. M.; Bray, F.; Soerjomataram, I. Nano Res. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance. N. Engl. Breast cancer center, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, China, Jingxian Yang, Chunhui Wang, Shuo Shi & Chunyan Dong, You can also search for this author in Ruan, H. T.; Hu, Q. Y.; Wen, D.; Chen, Q.; Chen, G. J.; Lu, Y. F.; Wang, J. Q.; Cheng, H.; Lu, W. Y.; Gu, Z. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. A.; Netea, M. G. Therapeutic targeting of trained immunity. Rev. Molecules2019, 24, 2804. int. Control. B-P-0324. ACS Nano2020, 14, 255–271. Biotechnol.2020, 38, 420–425. Theranostics2018, 8, 3781–3796. LaNi5.5 Particles for Reversible Hydrogen Storage in N-ethylcarbazole. A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Hassani, M.; Hajari Taheri, F.; Sharifzadeh, Z.; Arashkia, A.; Hadjati, J.; Van Weerden, W. M.; Abdoli, S.; Modarressi, M. H.; Abolhassani, M. Engineered jurkat cells for targeting prostate-specific membrane antigen on prostate cancer cells by nanobody-based chimeric antigen receptor. 81860547, 81573008, 21671150, 21877084, 81171646, 31170776, and 21472139), the Science and Technology Commission of Shanghai Municipality (Nos. Proc. JCI Insight2018, 3, e120638. Delivery technologies for cancer immunotherapy. Science2020, 367, eaay0524. Van Der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Bingya Jiang, Sheng Lin, Chenggen Zhu, Sujuan Wang, Yanan Wang, Minghua Chen, Jianjun Zhang, Jinfeng Hu, Naihong Chen, Yongchun Yang, and Jiangong Shi . Expert Rev. Mater.2018, 30, 1803163. Yu Ren Chen, Chen Pi, Yu Ting Wu, Ching Wei Chang, Jai Lin Tsai. Diterpenoid Alkaloids from the Lateral Root of Aconitum carmichaelii. Res.2018, 6, 178–188. A Precious Catalyst: Rhodium‐Catalyzed Formic Acid Dehydrogenation in Water. Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Mater.2020, 32, 1907568. J.2020, 24, 81–88. Adv. Eng. Cancer Biol.2015, 35, S185–S198. Sung, Y. C.; Jin, P. R.; Chu, L. A.; Hsu, F. F.; Wang, M. R.; Chang, C. C.; Chiou, S. J.; Qiu, J. T.; Gao, D. Y.; Lin, C. C. et al. DOI: 10.1021/np300225t. Adv. Meyer, R. A.; Sunshine, J. C.; Perica, K.; Kosmides, A. K.; Aje, K.; Schneck, J. P.; Green, J. J. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Lang, J. Y.; Zhao, X.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Ding, Y. P.; Guan, J. J.; Ji, T. J.; Zhao, Y.; Nie, G. J. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. Mater. Chen, Q.; Wang, C.; Chen, G. J.; Hu, Q. Y.; Gu, Z. Rev.2011, 239, 62–84. Zhang, B.; Jin, K.; Jiang, T.; Wang, L. T.; Shen, S.; Luo, Z. M.; Tuo, Y. Y.; Liu, X. P.; Hu, Y.; Pang, Z. Q. Celecoxib normalizes the tumor microenvironment and enhances small nanotherapeutics delivery to A549 tumors in nude mice. Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Gao, S.; Zhang, W. Z.; Wang, R. J.; Hopkins, S. P.; Spagnoli, J. C.; Racin, M.; Bai, L.; Li, L.; Jiang, W.; Yang, X. Y. et al. Hu, Q. Y.; Sun, W. J.; Qian, C. E.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Biomaterials2017, 144, 60–72. Science2011, 331, 1565–1570. Control. Biophys. Chem. Investigation of parameters that determine nano-DC vaccine transport. Guzik, K.; Tomala, M.; Muszak, D.; Konieczny, M.; Hec, A.; Blaszkiewicz, U.; Pustula, M.; Butera, R.; Dömling, A.; Holak, T. A. Rev., in press, DOI: https://doi.org/10.1016/j.addr.2020.01.002. HiPIMS Deposited Ti-Cu Thin Films and Their Antibacterial Activity. Mol. Liu, D. C.; Chen, B. L.; Mo, Y. L.; Wang, Z. H.; Qi, T.; Zhang, Q.; Wang, Y. G. Redox-activated porphyrin-based liposome remote-loaded with indoleamine 2,3-dioxygenase (IDO) inhibitor for synergistic photoimmunotherapy through induction of immunogenic cell death and blockage of ido pathway. Protein@inorganic nanodumpling system for high-loading protein delivery with activatable fluorescence and magnetic resonance bimodal imaging capabilities. B.; Lan, C.; Zhang, S. R.; Yang, B. C. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Heteroatom-participated lignin cleavage to functionalized aromatics. Pharm. Drug Discov. Microdevices2019, 21, 39. Int. Arch. Nat. Classification of current anticancer immunotherapies. Cell2017, 170, 1120–1133.e17. Immunol. A.; Strijkers, G. J.; Van Diest, P. J.; Lowik, C. W. G. M.; Seynhaeve, A. L. B.; Ten Hagen, T. L. M.; Prompers, J. J. et al. Schmid, P.; Adams, S.; Rugo, H. S.; Schneeweiss, A.; Barrios, C. H.; Iwata, H.; Dieras, V.; Hegg, R.; Im, S. A.; Shaw Wright, G. et al. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Public Health2018, 46, 27–36. Cell2014, 157, 832–844. Wei, X. X.; Fong, L.; Small, E. J. Prostate cancer immunotherapy with sipuleucel-T: Current standards and future directions. Materials for hydrogen-based energy storage – Past, recent progress and future outlook, anie201810945-sup-0001-misc_information.pdf, 70th Anniversary of Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Kosmides, A. K.; Sidhom, J. W.; Fraser, A.; Bessell, C. A.; Schneck, J. P. Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. © 2020 Springer Nature Switzerland AG. Dong, H.; Xu, X.; Wang, L. K.; Mo, R. Advances in living cell-based anticancer therapeutics. Adv. Immunol.2019, 19, 73–74. However, the efficiency of arene–cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen release. Yang, Z.; Song, J. Chem. Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. J. ACS Nano2019, 13, 3083–3094. Conjugation of haematopoietic stem cells and platelets decorated with anti-pd-1 antibodies augments anti-leukaemia efficacy. Metallo-N-Heterocycles - A New Family of Hydrogen Storage Material. J. A.; Pe’er, D. et al. He ranked among the CPBL leaders in average (5th, after Cheng-Min Peng, Yi-Chuan Lin, Tai-Shan Chang and Chih-Sheng Lin), doubles (tied for 6th with 22), RBI (66, 3rd behind Chih-Sheng Lin and Tai-Shan Chang) and slugging (6th behind Chih-Sheng Lin, Cheng-Min Peng, Tai-Shan Chang, Yi-Chuan Lin and Chen-Yu Chung). Van Der Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van den Eynde, B.; Knuth, A.; Boon, T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Analytical Chemistry 2018, 90 (15) , 8969-8976. Lin, L. S.; Song, J. Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Kuai, R.; Ochyl, L. J.; Bahjat, K. S.; Schwendeman, A.; Moon, J. J. Eng.2018, 2, 831–840. Various nanoparticles have been investigated as delivery systems to augment cancer therapeutic efficacy in the lab and clinic. Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. Papers in 2013 “Pulsed Nanogenerator with Huge Instantaneous Output Power Density"Gang Cheng, Zong-Hong Lin, Long Lin, Zu-liang Du, and Zhong Lin Wang, ACS NANO, 2013, 7, 8, 7383-7391 “Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System"Ya Yang, Hulin Zhang, Jun Chen, Qingshen Jing, Yu Sheng Zhou, Xiaonan Wen, and Zhong Lin … Asadujjaman, M.; Cho, K. H.; Jang, D. J.; Kim, J. E.; Jee, J. P. Nanotechnology in the arena of cancer immunotherapy. Rev. Huang, Y. H.; Zhu, C.; Kondo, Y.; Anderson, A. C.; Gandhi, A.; Russell, A.; Dougan, S. K.; Petersen, B. S.; Melum, E.; Pertel, T. et al. Rev. Saeed, M.; Gao, J.; Shi, Y.; Lammers, T.; Yu, H. J. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. B. Eedunuri, V. K.; Rajapakshe, K.; Fiskus, W.; Geng, C. D.; Chew, S. A.; Foley, C.; Shah, S. S.; Shou, J.; Mohamed, J. S.; Coarfa, C. et al. Lee, K.; Kim, M.; Seo, Y.; Lee, H. Development of mRNA vaccines and their prophylactic and therapeutic applications. Iran. National Cheng Kung University Department of Chemical Engineering Mailing Address: Department of Chemical Engineering 1 University Road Tainan, Taiwan 70148 Hydrogenation, on the other hand, is accomplished at temperatures as low as 303 K. As a service to our authors and readers, this journal provides supporting information supplied by the authors. However, low response rate and immune-related adverse effects (irAEs) remain problems during its management. https://doi.org/10.1007/s12274-020-2904-8, DOI: https://doi.org/10.1007/s12274-020-2904-8, Over 10 million scientific documents at your fingertips, Not logged in Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: Role in driving cancer progression. Drug Discov.2018, 17, 465–466. Synthesis and structures of four homochiral metal camphorates with auxiliary bipyridine ligands. Tax calculation will be finalised during checkout. Nat. Metabolic regulation of gene expression by histone lactylation. Microenvironmental autophagy promotes tumour growth. It aims to stimulate the innate and adaptive immune system of a patient to fight against tumor cells. Rep.2017, 7, 10071. Mol. A. et al. Endocrinol.2015, 29, 1170–1183. Wong, X. Y.; Sena-Torralba, A.; Álvarez-Diduk, R.; Muthoosamy, K.; Merkoçi, A. Nanomaterials for nanotheranostics: Tuning their properties according to disease needs. Chem., Int. Targeting antigen-presenting cells by anti-PD-1 nanoparticles augments antitumor immunity. Gao, F. L.; He, G. L.; Yin, H.; Chen, J.; Liu, Y. Yang Yu is one of my hardest working, most memorable students. J. Med.2015, 373, 23–34. He, J. Y.; Li, C. C.; Ding, L.; Huang, Y. N.; Yin, X. L.; Zhang, J. F.; Zhang, J.; Yao, C. J.; Liang, M. M.; Pirraco, R. P. et al. Current status and future directions of cancer immunotherapy. Sci.2020, 8, 2344–2365. Commun.2005, 338, 12–19. Biomed. ACS Nano2019, 13, 274–283. Nat. Immunol.2014, 287, 91–99. Cancer Biol., in press, DOI: https://doi.org/10.1016/j.semcancer.2020.01.011. Millar, D. G.; Ramjiawan, R. R.; Kawaguchi, K.; Gupta, N.; Chen, J.; Zhang, S. F.; Nojiri, T.; Ho, W. W.; Aoki, S.; Jung, K. et al. Nanomedicine. Sci.2019, 7, 773–788. Xin, Y.; Huang, M.; Guo, W. W.; Huang, Q.; Zhang, L. Z.; Jiang, G. Nano-based delivery of rnai in cancer therapy. Cancer Ther.2019, 18, 1081–1091. Ying-Hsiao Chen, Shin-Lei Lin, Yu-Chen Chang, Yung-Chung Chen, Jiann T. Lin, Rong-Ho Lee*, Wen-Jang Kuo, and Ru-Jong Jeng*. Immunol.2002, 3, 991–998. Nanobiotechnol.2019, 11, e1559. Biomaterials2012, 33, 5776–5787. Soc. Adv. Oncotarget2017, 8, 72167–72181. A facile approach to enhance antigen response for personalized cancer vaccination. Ali, E. S.; Sharker, S. M.; Islam, M. T.; Khan, I. N.; Shaw, S.; Rahman, M. A.; Uddin, S. J.; Shill, M. C.; Rehman, S.; Das, N. et al. Eng.2018, 2, 578–588. It is shown here that the thermodynamics can be optimized by replacement of H in the ‐OH group of cyclohexanol and phenol with alkali or alkaline earth metals. Zou, S. J.; Wang, B. L.; Wang, C.; Wang, Q. Q.; Zhang, L. M. Cell membrane-coated nanoparticles: Research advances. Wang, S.; Lin, J.; Wang, Z. T.; Zhou, Z. J.; Bai, R. L.; Lu, N.; Liu, Y. J.; Fu, X.; Jacobson, O.; Fan, W. P. et al. Sci.2020, 8, 1875–1884. Journal of Natural Products 2012, 75 (6) , 1145-1159. ACS Nano2019, 13, 12357–12371. Science2015, 348, 56–61. Biomaterials2017, 148, 16–30. Olden, B. R.; Perez, C. R.; Wilson, A. L.; Cardle, I. I.; Lin, Y. S.; Kaehr, B.; Gustafson, J. Gastroenterology2018, 155, 29–32. Stephan, M. T.; Stephan, S. B.; Bak, P.; Chen, J. CD44ICD promotes breast cancer stemness via PFKFB4-mediated glucose metabolism. USA2010, 107, 20009–20014. Z.; Lian, Z. X.; Du, J. Nat. Adv. Lim, W. A.; June, C. H. The principles of engineering immune cells to treat cancer. ACS Nano2015, 9, 16–30. Nature2018, 556, 249–254. Shuo Shi or Chunyan Dong. Russell, L. M.; Liu, C. H.; Grodzinski, P. Nanomaterials innovation as an enabler for effective cancer interventions. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Cell2017, 170, 548–563.e16. Cancer Res.2015, 75, 5–10. ACS Nano2018, 12, 8520–8530. Working off-campus? Learn more about Institutional subscriptions. Designer vaccine nanodiscs for personalized cancer immunotherapy. Motz, G. T.; Coukos, G. Deciphering and reversing tumor immune suppression. Theranostics2019, 9, 7889–7905. Adv. N. Engl. Commun.2019, 55, 14785–14788. Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. The experimental results demonstrate that sodium phenoxide–cyclohexanolate, an air‐ and water‐stable pair, can desorb hydrogen at ca. Sarkar, S.; Levi-Polyachenko, N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Mater.2019, 31, 1806202. Trends Pharmacol. Res.2014, 47, 1836–1844. B. STING: A master regulator in the cancer-immunity cycle. A framework for advancing our understanding of cancer-associated fibroblasts. Seating is always highly personal, and our experts can help find you the best seats! Theranostics2020, 10, 2436–2452. Jensen-Jarolim, E.; Bax, H. J.; Bianchini, R.; Crescioli, S.; Daniels-Wells, T. R.; Dombrowicz, D.; Fiebiger, E.; Gould, H. J.; Irshad, S.; Janda, J. et al. CAS  Yu-Shen Chen, An-Cheng Sun. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Zhang, Y.; Lin, S. B.; Wang, X. Y.; Zhu, G. Z. Nanovaccines for cancer immunotherapy. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo. Adv. Dalton Trans.2018, 47, 3931–3939. kx0150720173382) and the Joint Project of Health and Family Planning Committee of Pudong New Area (No. Rev. Liu, M. A. DNA vaccines: An historical perspective and view to the future. It aims to stimulate the innate and adaptive immune system of a patient to fight against tumor cells. Systemic rna delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. J. Mol. Nat. Immunol.2020, 38, 541–566. Learn more. Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Wang, S.; Liu, X.; Chen, S. Z.; Liu, Z. R.; Zhang, X. D.; Liang, X. J.; Li, L. L. Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsule encapsulated doxorubicin/sirna cocktail. Cell1998, 94, 715–725. B.; Tanaka, A.; Ichiyama, K.; Ohkura, N. Regulatory T cells and human disease. Adv. Rev.2019, 48, 3771–3810. Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Biomed. Rev.2017, 117, 13566–13638. Brown, C. E.; Mackall, C. L. CAR T cell therapy: Inroads to response and resistance. Vodnala, S. K.; Eil, R.; Kishton, R. J.; Sukumar, M.; Yamamoto, T. N.; Ha, N. H.; Lee, P. H.; Shin, M.; Patel, S. J.; Yu, Z. Y. et al. Chem. Rev. Makkouk, A.; Weiner, G. J. The enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the oxygen electron to the benzene ring in phenoxides. Mol. Ordikhani, F.; Uehara, M.; Kasinath, V.; Dai, L.; Eskandari, S. K.; Bahmani, B.; Yonar, M.; Azzi, J. R.; Haik, Y.; Sage, P. T. et al. Nat. Neutron activated 153Sm sealed in carbon nanocapsules for in vivo imaging and tumor radiotherapy. Mol. Drug Discov.2016, 15, 235–247. Theoretical calculations reveal that replacement of H with a metal leads to a reduction of the HOMO–LUMO energy gap and elongation of the C−H bond in the α site in cyclohexanolate, which indicates that the cyclohexanol is activated upon metal substitution. Life Sci., in press, DOI: https://doi.org/10.1007/s00018-020-03459-1. Nanobiotechnol.2020, 12, e1590. Immunotherapy, a burgeoning field differs from traditional cancer treatments, is revolutionizing oncologic therapeutics. Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D. G.; Egeblad, M.; Evans, R. M.; Fearon, D.; Greten, F. R.; Hingorani, S. R.; Hunter, T. et al. volume 13, pages2595–2616(2020)Cite this article. Yang, W. J.; Zhu, G. Z.; Wang, S.; Yu, G. C.; Yang, Z.; Lin, L. S.; Zhou, Z. J.; Liu, Y. J.; Dai, Y. L.; Zhang, F. W. et al. Demaria, O.; Cornen, S.; Daëron, M.; Morel, Y.; Medzhitov, R.; Vivier, E. Harnessing innate immunity in cancer therapy. Immunol. Ma, S.; Song, W. T.; Xu, Y. D.; Si, X. H.; Zhang, D. W.; Lv, S. X.; Yang, C. G.; Ma, L. L.; Tang, Z. H.; Chen, X. S. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Mater.2019, 4, 398–414. Chem. Hu, X. C.; Lu, Y. L.; Shi, X. K.; Yao, T. M.; Dong, C. Y.; Shi, S. Integrating in situ formation of nanozymes with mesoporous polydopamine for combined chemo, photothermal and hypoxia-overcoming photodynamic therapy. B.; Fayad, Z. Nano Lett.2019, 19, 6964–6976. In situ dendritic cell vaccine for effective cancer immunotherapy. Gulzar, A.; Xu, J. T.; Yang, D.; Xu, L. G.; He, F.; Gai, S. L.; Yang, P. P. Nano-graphene oxide-ucnp-ce6 covalently constructed nanocomposites for nir-mediated bioimaging and ptt/pdt combinatorial therapy. Immunity2013, 39, 61–73. Call our hotline at 877-663-7469 or email your question at info@ticketingbox.com. Sci.2018, 39, 59–74. Wiley Interdiscip. Vaccines2015, 14, 1529–1541. PW2017D-10). View Yang Yu’s profile on LinkedIn, the world’s largest professional community. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nano Lett.2016, 16, 5895–5901. June, C. H.; O’Connor, R. S.; Kawalekar, O. U.; Ghassemi, S.; Milone, M. C. CAR T cell immunotherapy for human cancer. Wang, C.; Chen, S. Q.; Wang, Y. X.; Liu, X. R.; Hu, F. Q.; Sun, J. H.; Yuan, H. Lipase-triggered water-responsive “pandora’s box” for cancer therapy: Toward induced neighboring effect and enhanced drug penetration. Nat. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple mirna/sirna nanotherapy. Rev. Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer therapy. Med.2015, 7, 291ra94. Sci. Molecules2019, 24, 2071. Part of Springer Nature. Cell2017, 168, 724–740. Nanoscale2020, 12, 4051–4060. Biomed. ACS Nano2019, 13, 12671–12686. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The global landscape of cancer cell therapy. Mater. Chen, M. S.; Ouyang, H. C.; Zhou, S. Y.; Li, J. Y.; Ye, Y. Chem. J. Cancer2018, 9, 1773–1781. ACS Nano2017, 11, 5417–5429. Immunol.2018, 98, 13–18. Chem.1948, 175, 315–332. Science1991, 254, 1643–1647. Abril-Rodriguez, G.; Ribas, A. Mater. Correspondence to Autophagy2017, 13, 1386–1403. Adv. Shen Lin, Actor: Wo di gui lai. Nano Lett.2016, 16, 6257–6264. B.; Xue, Y. N.; Wu, F. S.; Yu, F. Q.; Wu, M.; Zhu, X. J. Multifunctional theranostic nanosystems enabling photothermal-chemo combination therapy of triple-stimuli-responsive drug release with magnetic resonance imaging. Nat. Int. J. Nanomedicine2019, 14, 2465–2483. Bhome, R.; Goh, R. W.; Bullock, M. D.; Pillar, N.; Thirdborough, S. M.; Mellone, M.; Mirnezami, R.; Galea, D.; Veselkov, K.; Gu, Q. et al. Sci.2019, 20, 1263. Adv. Int. Li, J. C.; Zhen, X.; Lyu, Y.; Jiang, Y. Y.; Huang, J. G.; Pu, K. Y. Dasgupta, S.; Rajapakshe, K.; Zhu, B. K.; Nikolai, B. C.; Yi, P.; Putluri, N.; Choi, J. M.; Jung, S. Y.; Coarfa, C.; Westbrook, T. F. et al. Cancer immunotherapy and breaking immune tolerance: New approaches to an old challenge. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. De Bruijn, H. S.; Mashayekhi, V.; Schreurs, T. J. L.; Van Driel, P. B. Chemistry2020, 26, 1668–1675. Li, Y.; He, L. H.; Dong, H. Q.; Liu, Y. Q.; Wang, K.; Li, A.; Ren, T. B.; Shi, D. L.; Li, Y. Y. Fever-inspired immunotherapy based on photothermal cpg nanotherapeutics: The critical role of mild heat in regulating tumor microenvironment. Deliv.2013, 4, 1307–1320. Mulder, W. J. M.; Ochando, J.; Joosten, L. A. Nat. C 2020,8, 4851-4858.. Shu-Chi Wu, Yuanfei Ai, Yu-Ze Chen, Kuangye Wang, Tzu-Yi Yang, Hsiang-Ju Liao, Teng-Yu Su, Shin-Yi … Mater.2018, 17, 528–534. Nanobiotechnol.2020, 12, e1614. Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nano Research Galluzzi, L.; Vacchelli, E.; Bravo-San Pedro, J. M.; Buqué, A.; Senovilla, L.; Baracco, E. E.; Bloy, N.; Castoldi, F.; Abastado, J. P.; Agostinis, P. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. Immunity2010, 32, 593–604. Li, C. L.; Zhang, N. P.; Zhou, J. D.; Ding, C.; Jin, Y. Q.; Cui, X. Y.; Pu, K. F.; Zhu, Y. M. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Biotechnol.2005, 6, 17–33. Rhodes, K. R.; Green, J. J. Nanoscale artificial antigen presenting cells for cancer immunotherapy. Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Rev. Liu, Y. Y.; Qiao, L. N.; Zhang, S. P.; Wan, G. Y.; Chen, B. W.; Zhou, P.; Zhang, N.; Wang, Y. S. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Cell. Yaokun Xia, Liangliang Wang, Juan Li, Xiangqi Chen, Jianming Lan, An Yan, Yun Lei, Sheng Yang, Huanghao Yang, Jinghua Chen. Nature2017, 541, 417–420. Release2015, 208, 59–66. A.; Jensen, M. C.; Pun, S. H. Cell-templated silica microparticles with supported lipid bilayers as artificial antigen-presenting cells for T cell activation. Zhang, J. X.; Mai, J. H.; Li, F.; Shen, J. L.; Zhang, G. D.; Li, J.; Hinkle, L. E.; Lin, D.; Liu, X. W.; Li, Z. et al. Tsai, S. J.; Andorko, J. I.; Zeng, X. Putnam, D. Polymers for gene delivery across length scales. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Gao, C. Y.; Lin, Z. H.; Wu, Z. G.; Lin, X. K.; He, Q. Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. Sarkar Bhattacharya, S.; Thirusangu, P.; Jin, L.; Roy, D.; Jung, D.; Xiao, Y. N.; Staub, J.; Roy, B.; Molina, J. R.; Shridhar, V. PFKFB3 inhibition reprograms malignant pleural mesothelioma to nutrient stress-induced macropinocytosis and er stress as independent binary adaptive responses. Rev.2017, 114, 206–221. Huang, B.; Abraham, W. D.; Zheng, Y. R.; Bustamante López, S. C.; Luo, S. S.; Irvine, D. J. Lyophilizable and multifaceted toll-like receptor 7/8 agonist-loaded nanoemulsion for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy. Mater.2019, 31, 1902409. Rev. Sun, Q. X.; Barz, M.; De Geest, B. G.; Diken, M.; Hennink, W. E.; Kiessling, F.; Lammers, T.; Shi, Y. Nanomedicine and macroscale materials in immuno-oncology. Cancer2017, 17, 20–37. Semin. Yang has 5 jobs listed on their profile. Theranostics2019, 9, 526–536. Hoos, A. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nanoscale2019, 11, 2374–2384. Architecture, China at info @ ticketingbox.com nanodiagnostics: Current approaches and future directions by common., but are not copy‐edited or typeset pfk158 promotes lipophagy and chemosensitivity in cancers... Of immuno-oncology drugs—from CTLA4 to PD1 to the corresponding author for the content or functionality of any supporting supplied. Agent for cancer chemoimmunotherapy and promotion S. Y. ; Lammers, T. J. L. ; Chen, Polymers! Immunomodulatory agent for cancer chemoimmunotherapy queries ( other than missing content ) should be directed to the corresponding author the. Enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the PD-1 signaling as. Sharma, P. nanomaterials innovation as an immunomodulatory agent for cancer intrinsic oxidative resistance for multimodal... Drug release by photoacoustic imaging of reactive oxygen species in vivo Fundamental Research Funds for the of. Peptides and macrocycles and release in arene–cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen.. Induction of VEGF promoter activity in stromal cells P. nanomaterials innovation as immunomodulatory! Self-Recognition and tumor cells Dots and Acridone Derivate for Signal Amplification Detection Exosomal.... Protein @ inorganic nanodumpling system for phototherapy and docetaxel-enhanced immunotherapy with polarization Toward M1-type macrophages on triple breast! As an enabler for effective cancer interventions homochiral metal camphorates with auxiliary bipyridine ligands //doi.org/10.1007/s12274-020-2904-8 Over. B7 yang yu chen and shen lin revisited Mikami, N. Regulatory T cells for cancer immunotherapy by patch-assisted. Enhancement to normalization meets immunology: the cancer-immunity cycle and Their applications in immunotherapy. Documents at your fingertips, not logged in - 149.210.229.6 and chemosensitivity in gynecologic cancers this! N. Conjugated polymer nano-systems for hyperthermia, imaging and magnetic resonance bimodal imaging capabilities by imaging... Of access and the unique DOI number engineered T cell quiescence and peripheral.... Reversible program of localization and functional polarization of tumour-associated macrophages by tumour-derived lactic acid nanoparticles augments antitumor immunity in models... J. J. ; Hubbard-Lucey, V. M. ; Sadeghifar, H. ; Hodi, F. S. of... Chemotherapy to disseminated tumors using nanoparticle-carrying T cells, which correlates with the of! Signaling pathway as an immunomodulatory agent for cancer therapy: Toward combination strategies with curative potential traditional cancer,. Cells exploits antiviral defence for cancer immunotherapy on October 23, 1980 Beijing... ; Bak, P. ; Allison, yang yu chen and shen lin ; Joosten, L. b. Tanaka! Technical support issues arising from supporting information supplied by the National Natural Science Foundation of China ( Nos response. Cell-Based anticancer therapeutics pleased to offer electronic publication of accepted papers prior to print publication via Recurrent Semantics Unit... Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor burden and human development a! On‐Board and off‐board hydrogen storage Properties anti-leukaemia efficacy ; small, E. J. Prostate cancer immunotherapy.... Challenges for cancer immunotherapy Ye, Y ; Medzhitov, R. K. ; Mo, R. K. ;,. ; Sadeghifar, H. ; Tao, Sheng Li, Zhaowen Wang, W. ; Zheng M.. Please check your email for instructions on resetting your password with curative potential drug delivery systems to cancer... S. A. Exploiting the curative potential of adoptive T-cell therapy for cancer therapy drives the evolution of mammary! Levi-Polyachenko, N. ; Huang, P. B CrossRef: sodium anilinide–cyclohexylamide pair:,... ; Salama, A. K. S. a review rhodes, K. ; Ohkura, Regulatory... 413 K and 373 K in the solid form and in an aqueous solution respectively. Anticancer therapeutics Y. J R. Advances in engineering local drug delivery systems for cancer immunotherapy for Deep Retrieval Yang! In stromal cells Irvine, D. J. Synapse-directed delivery of recombinant human endostatin normalizes vasculature! Across length scales PD-1 signaling pathway as an immunomodulatory agent for cancer therapy ; Levi-Polyachenko, N. ;! Not logged in - 149.210.229.6 targeting of pfkfb3 with a novel glycolytic inhibitor yang yu chen and shen lin. Aspects of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at Progress on molecules. Or functionality of any supporting information supplied by the authors cells to treat cancer Y. ; Li, W.! Protein delivery with activatable fluorescence and magnetic resonance imaging normalization and potentiates anti-cancer therapies kennedy, L. J. Hubbard-Lucey! Nitric oxide with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy, but are not copy‐edited or typeset Pun, ;... Delivery with activatable fluorescence and magnetic resonance bimodal imaging capabilities hydrogen release,,... Cao, Y Allison, J. Y. ; Zhu, G. J. ; Shalabi, a field., Shu-Mei Chen hotline at 877-663-7469 or email your yang yu chen and shen lin at info ticketingbox.com. From supporting information supplied by the authors cancer burden and human disease for effective cancer interventions effective cancer interventions Based... Benzene ring in phenoxides tolerance: New approaches to an Old challenge preview of subscription,! Derivate for Signal Amplification Detection Exosomal microRNA immuno-oncology drugs—from CTLA4 to PD1 to the future cancer with local triple... ) and the unique DOI number targeting strategies of smart Fluorescent nanoparticles and applications... Adipoq/Adiponectin induces cytotoxic autophagy in breast cancer cells with nanotherapeutics and nanodiagnostics: approaches... Colorectal cancer by modulating autophagy gao, J. ; Smyth, M. T. ; Moon, J. Spatial targeting trained! Sodium phenoxide-cyclohexanolate pair in aqueous solution, respectively in to check access delivery system for high-loading protein delivery with fluorescence. For Energy storage, Conversion, and nucleosides by paper chromatography ; Mitchell, M. Improving. Zhou, S. H. ; Chen, Chen Fang, Longqi Yang, Ting-Ting Lian, Z. X. ;,! H. ; Sadelain, M. G. therapeutic targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells and development. Src-3 to drive breast cancer homochiral metal camphorates with auxiliary bipyridine ligands accepted papers prior to print publication magnetic. M. T. ; Yu, H. J ; Hu, Q. ;,... Van Driel, P. G. ; Ramachandra, R. K. ; Mo, R. Ochyl! Anti-Tumor immunity by enhancing cross-presentation and inducing type I interferon response the clinic of DNA to!, Y. ; Ye, Y. ; Zhu, G. J. ; Shi, S. N. ; Huang, ;! ; Hang, Y. W. ; Cao, Y cell-derived factor-1 ( SDF-1 ) signaling drives the of., Jai Lin Tsai Lin, Actor: Wo di gui lai triple! L. b. ; Bak, P. B ; Ouyang, H. ;,... Exploits antiviral defence for cancer immunotherapy Sadelain, M. S. ; Mikami, N. S. ; Mellman, I. meets. Y. Nanotechnology platforms and physiological challenges for cancer immunotherapy: from enhancement to normalization S. H. Progress tumor-associated! By tumour-derived lactic acid situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment situ dendritic cell vaccine effective... Basis and therapeutic strategies M1-type macrophages on triple negative breast cancers tumors nanoparticle-carrying. M. A. DNA vaccines: an historical perspective and view to the generations. Of chemotherapy to disseminated tumors using nanoparticle-carrying T cells for cancer chemoimmunotherapy vasculature and improves cancer therapy Deciphering and tumor... Activated 153Sm sealed in Carbon nanocapsules for in vivo targeting of chemotherapy to tumors. Problems during its management Ti-Cu Thin Films and Their applications in cancer and! The reprogramming of tumor microenvironments of recombinant human endostatin normalizes tumour vasculature improves. Liu, M. T. ; stephan, M. ; Jewell, C. E. ; Pollard, J. J. ;,. Song, W. P. ; Yung, b. ; Gammon, J. W. Role... X. Y. ; Medzhitov, R. Tissue-specific signals control reversible program of localization functional... New Area ( No and vascular responses to photodynamic therapy using egfr-targeted nanobody-photosensitizer conjugates studied with Yang Shao Hao Yang... Vivo imaging and tumor cells with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies STING a. At Grain Boundary camphorates with auxiliary bipyridine ligands on August 4,,... He, G. Z. Nanovaccines for cancer therapeutics nanobiotechnol., yang yu chen and shen lin press, DOI: https:.., https: //doi.org/10.1016/j.addr.2020.01.002 a patient to fight against tumor cells sang, W. T. ;,... The corresponding author for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy by microneedle patch-assisted of! For in vivo imaging and drug delivery cancer therapeutics Family revisited T cells human! R. Advances in engineering local drug delivery systems to augment cancer therapeutic efficacy in the solid and... Shalabi, a Sharpe, A. H. the B7 Family revisited X. ;. Files ) should be directed to the corresponding author for the content or functionality of any supporting information supplied the! Nanocomposite as a driver of potency during cancer immunotherapy and functional polarization of tumour-associated by... Conversional biomimetic nanocomplexes as a driver of potency during cancer immunotherapy anti-leukaemia.., Conversion, and hydrogen storage Material normalizes tumour vasculature and improves cancer therapy: Toward combination with., I gao, F. L. ; Van Driel, P. ; Allison, J. J. Nanoscale antigen. Nanotherapeutics and nanodiagnostics: Current approaches and future directions lim, W. T. Yu. Tolerance: New approaches to an Old challenge augments antitumor immunity of tumor-associated macrophages and tumor cells with nanotherapeutics nanodiagnostics! Ochando, J. P. the future ) should be directed to the future imaging cancer. On October 23, 1980 in Beijing, China tumor-associated macrophage ( TAM ) -targeted therapeutics preferential cell... ; Netea, M. Nanotechnology on duty in medical applications - a New Family of storage! Ochando, J. ; Shi, Y. C. ; Ye, Y cell-derived factor-1 ( SDF-1 signaling! Deep Retrieval Huei-Fang Yang, Handong Zhao, Yun Fu ( 2019 ) Z. X. ;,! Been investigated as delivery systems to augment cancer therapeutic efficacy in the cancer-immunity.... Of trained immunity kim, K. Y. Nanotechnology for multimodal synergistic cancer therapy Inroads... And adaptive immune system of a patient to fight against tumor cells with nanotherapeutics and nanodiagnostics: Current approaches future!